Bayesian Estimation of Dynamic Discrete Choice Models
نویسندگان
چکیده
We propose a new estimator for dynamic programming discrete choice models. Our estimation method combines the Dynamic Programming algorithm with a Bayesian Markov Chain Monte Carlo algorithm into one single Markov Chain algorithm that solves the dynamic programming problem and estimates the parameters at the same time. Our key innovation is that during each solution-estimation iteration both the parameters and the expected value function are updated only once. This is in contrast to the conventional estimation methods where at each estimation iteration the dynamic programming problem needs to be fully solved. A single dynamic programming solution requires repeated updates of the expected value functions. As a result, in our algorithm the computational burden of estimating a dynamic model is of similar order of magnitude as that of a static model. Another feature of our algorithm is that even though per estimation iteration, we keep the number of grid points on the state variable small, we can make the number of effective grid points as large as we want by simply increasing the number of estimation iterations. This is how our algorithm overcomes the “Curse of Dimensionality.” We prove that under mild conditions, similar to those imposed in standard Bayesian literature, the parameters in our algorithm converge in probability to the true posterior distribution regardless of the starting values. We show how our method can be applied to models with standard random effects where observed and unobserved heterogeneities are continuous. This is in contrast to most dynamic structural estimation models where only a small number of discrete types are allowed as heterogeneities.
منابع مشابه
Bayesian Procedures as a Numerical Tool for the Estimation of Dynamic Discrete Choice Models
Bayesian Procedures as a Numerical Tool for the Estimation of Dynamic Discrete Choice Models Dynamic discrete choice models usually require a general specification of unobserved heterogeneity. In this paper, we apply Bayesian procedures as a numerical tool for the estimation of a female labor supply model based on a sample size which is typical for common household panels. We provide two import...
متن کاملA Practitioner’s Guide to Bayesian Estimation of Discrete Choice Dynamic Programming Models∗
This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed in Imai, Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm, which solves the DDP model and estimates its structural parameters ...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملBayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data
Dynamic panel data models include the important part of medicine, social and economic studies. Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models. The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance. Recently, quantile regression to analyze dynamic pa...
متن کاملClosed-Form Estimation of Dynamic Discrete Choice Models with Unobserved State Variables
For dynamic discrete choice models where a state variable is unobserved but its proxy is available, we derive closed-form identification of the conditional choice probability (CCP), the Markov law of state transition, and the underlying structural parameters by explicitly solving relevant integral equations. Because of its closed form like the OLS, our estimator does not rely on numerical optim...
متن کامل